INTRODUCCIÓN
Desde que, a comienzos del siglo XX, Frederick Taylor, Henry Gantt, Frank y Lilian Gilbreth, entre otros, realizaron las primeras aplicaciones del método científico a los problemas de las organizaciones, a la vez que Henry Fayol postuló los principios generales de la administración, podría decirse que la administración de organizaciones dejó de ser una actividad intuitiva. (Hillier et al., 1997; Eppen y Gould, 2000; Devoto, 2003; Prawda, 2004; Ramos et al., 2010; López et al., 2017).
Mientras más complejas y especializadas se hicieron las organizaciones industriales, los problemas a resolver por los administradores fueron alcanzando una complejidad que no sólo era inherente a la situación bajo análisis, sino también a su interrelación con otros componentes de la organización, lo que reforzó la necesidad de adoptar un punto de vista científico y sistemático para interpretar, analizar y resolver los problemas de empresas e instituciones. (Devoto, 2003; Bustos y Chacón, 2012; Caicedo y Ortiz, 2014; Abril et al., 2015; Castillo y Aguirre, 2018).
Las raíces de la investigación de operaciones se remontan a muchas décadas, cuando se hicieron los primeros intentos para emplear el enfoque científico en la administración de empresas. Sin embargo, el inicio de la actividad llamada investigación de operaciones (IO), se atribuye a los servicios militares prestados a principio de la segunda Guerra Mundial. Estimulados por el evidente éxito de la IO en lo militar, los industriales comenzaron a interesarse en este nuevo campo. Como la explosión industrial seguía su curso al terminar la guerra, los problemas causados por el aumento de la complejidad y la especialización dentro de las organizaciones pasaron a un primer plano, comenzó a ser evidente que estos problemas eran básicamente los mismos presentados en la guerra, pero en un contexto diferente. Así se introdujo en la industria, los negocios y el gobierno (Moskowitz y Wright, 1982; Ramos et al., 2010; Colectivo de autores, 2013; López et al., 2017; Castillo y Aguirre, 2018).
Un factor, en otros, que dio gran ímpetu en la IO fue el advenimiento de las computadoras. Para manejar de manera más efectiva los complejos problemas inherentes a esta disciplina, por lo general se requiere de un gran número de cálculos; llevarlos a cabo a mano puede resultar casi imposible, entonces el desarrollo de la computadora digital, con su capacidad para realizar cálculos aritméticos, miles o tal vez millones de veces que los seres humanos, fue una gran ayuda para la IO.
Existen un conjunto de autores clásicos que han aportado significativamente al desarrollo de la IO como uno de los avances científicos más significativos del siglo XX, entre ellos Leonid Vitalievich Kantorovitx, Tjalling C. Koopmans y George Dantzig (Moskowitz y Wright, 1982; Prawda, 2004; Ramos et al., 2010; Bustos y Chacón, 2012; Colectivo de autores, 2013; López et al., 2017; Castillo y Aguirre, 2018).
La IO se define como conjunto de métodos matemáticos que se utilizan para argumentar la toma de decisiones en todas las esferas de la actividad humana, orientado hacia una finalidad, a través de la representación abstracta de los sistemas por medio de los modelos matemáticos (Ramos et al., 2010; Colectivo de autores, 2013; Ríos et al., 2013; Ortiz y Caicedo, 2014).
Como técnica para la solución de problemas como una ciencia y como un arte. El aspecto de la ciencia radica en favorecer técnicas y algoritmos matemáticos para resolver problemas de decisión adecuados. Es un arte porque el éxito se alcanza en todas las fases anteriores y posteriores a la solución de un modelo matemático depende de la forma apreciable de la creatividad y la habilidad personal de los analistas encargados de tomar las decisiones; por lo tanto; la obtención de los datos para la construcción del modelo, la validación de este y la implantación de la solución obtenida dependerán de la habilidad del equipo (o analista) de IO, para establecer líneas comunicación optima con las fuentes de información y también con los individuos responsables de implantar las soluciones recomendadas (Bustos y Chacón, 2012; Colectivo de autores, 2013; Abril et al., 2015; Ortiz, 2015).
La programación lineal es uno de los métodos de cálculo de la programación matemática; por su utilidad y posibilidades constituye una de las técnicas de cómputo matemático automatizado más desarrolladas en la actualidad, su teoría y método se refiere a la solución de problemas de optimización, en lo que se busca el valor máximo o mínimo de una función sujeta a determinadas restricciones con un número definido de variables. Los problemas de optimización se componen generalmente de tres elementos: función objetivo, variables y restricciones (Prawda, 2000; Ramos et al., 2010; Gómez, 2011; Jijón, 2013; Ríos et al., 2013; Castillo y Aguirre, 2017; Colectivo de autores, 2018). Su forma teórico general o estándar puede plantearse de la siguiente manera:
Estas situaciones se pueden obtener un conocimiento profundo del problema a partir del análisis científico que proporciona esta ciencia cuya contribución proviene principalmente de:
La estructuración de una situación de la vida real como un modelo matemático, logrando a abstracción de los elementos esenciales para que pueda buscarse una solución que concuerde con los objetivos del decisor. Esto implica tomar en cuenta el problema dentro del contexto del sistema completo.
El análisis de la estructura de tales soluciones y el desarrollo de procedimientos sistemáticos, métodos matemáticos, para obtenerlos.
El desarrollo de una solución, que permita optimizar, mejorar o analizar la eficiencia y/o efectividad de un sistema dentro del marco de referencia que fija los objetivos establecidos por el decisor.
Se define el modelo matemático la representación abstracta del sistema mediante variables y relaciones lógico-matemática. Mientras que el método matemático es la técnica de solución del modelo matemático. (Prawda, 2000; Colectivo de autores, 2013; Jijón, 2013; Ríos et al., 2013; Castillo y Aguirre, 2018).
Teniendo en cuenta lo antes expuesto los beneficios que reporta la aplicación de la IO son:
Incrementa la posibilidad de tomar mejores decisiones ante la presencia d varias alternativas.
Mejora la coordinación entre múltiples componentes de una organización, o sea, genera un mayor nivel de ordenación.
Mejora el control del sistema al instituir procedimientos sistemáticos que supervisan, por un lado, las operaciones que se llevan a cabo en la organización y, por otro, evita el regreso a un sistema peor.
Lograr un mejor sistema al hacer que este opere con una mejor eficiencia económica, con interacciones más fluidas, eliminado cuellos de botella, etc.
El presente trabajo tiene como objetivo aplicar el método de optimización (programación lineal) para la selección científicamente argumentada de la variante de plan de producción de cursos para la Plataforma Moodle. Se hace un análisis en cuanto si es posible o no lograr los niveles requeridos de las variables de decisión, que recurso quedan disponibles y cuales se consumen, cual es el valor que se obtiene de ganancia, costo por la política de decisión adoptada y otros resultados más, son la razón de ser del uso del Programa Lineal aplicada a la toma de disecciones del proceso de administración y producción.
MÉTODOS
La investigación se desarrolló en la Universidad Agraria de La Habana, Facultad de Ciencias Técnicas en el marco de la carrera Ingeniería en Procesos Agroindustriales (IPAI), en la modalidad de estudio a distancia donde se diseñan los cursos para la Plataforma Moodle que desarrolla la interactividad y se lleva a cabo el Proceso de Enseña-Aprendizaje, donde se analizará la producción de los mismos, teniendo en cuenta la IO mediante el Modelo de Programación Lineal en un plan de producción.
Se ha solicitado en el mes una producción de cinco cursos, estos necesitan que los objetos de aprendizaje producidos necesiten operaciones de clasificación, catalogación e indexación. El Laboratorio de Tecnología Educativa (LATED) donde está el Repositorio de Objetos de Aprendizaje de la UNAH (RUNAH) ha informado su disponibilidad en fondo de tiempo para el próximo mes el cual se muestra en la Tabla 1.
TABLA 1.
Disponibilidad de tiempo en las operaciones (h)
El tiempo en horas que demora cada operación en el tipo de curso a producir aparece en la Tabla 2.
TABLA 2.
Consumo de tiempo de cada curso en cada operación (h)
La Facultad de Ciencias Técnicas no debe producir más de 500, 700, 800, 900 y 600 cursos para las operaciones 1, 2 y 3 respectivamente, pero si se debe cumplir que el total de cursos entregados que debe ser como mínimo 300 y además se debe producir como mínimo al menos un curso de cada tipo para lograr la optimalidad del modelo a plantear.
El precio de venta de cada curso es de $10.00, $20.00, $35.00, $15.00 y $25.00. El costo de producción $5.00, $7.00, $15.00, $8.00 y $6.00
Por lo que se desea conocer cuál debe ser el plan de producción de la Facultad de Ciencias Técnicas para logar maximizar las ganancias
La ventaja fundamental del uso de la IO es que constituye un instrumento seguro para el aval “cuantitativo” de los fenómenos y procesos económicos, permitiendo representar múltiples alternativas del desarrollo y distribución de la producción y los servicios, y escoger la mejor de acuerdo con el criterio establecido.
Se tuvo en cuenta las etapas para la aplicación de la IO:
Formulación del problema: Diagnostico e identificación de los factores que influyen en problemas datos.
Construcción del modelo matemático que representa el sistema: grado de dificultad.
Solución del modelo (Aplicación del método): Aplicación del software
Prueba del modelo y evaluación e la solución: Prueba y evolución. Discusión y enriquecimiento.
Implementación y mantenimiento de la solución: Implementación, evaluación final y mantenimiento.
Además, los elementos y componentes del modelo de Programación Lineal (PL)
Variables de decisión (Xj): representa las actividades que compiten por los recursos.
Coeficiente económico: representa el objetivo que se deberá optimizar.
Función objetivo (FO): función lineal que representa en la variable Z el valor óptimo, el cual puede ser maximizar o minimizar.
Restricciones: relaciones lógico-matemáticas lineales que representan limitaciones que se oponen al objetivo que se quiere alcanzar.
Modelo de PL
Dado:
Xj: variable de decisión para cada actividad competitiva j. (j = 1,…, n)
MAX/MIN Z = ∑ CjXj Función objetivo
Sujeto las restricciones:
aijXj ≤ bi (i = 1,…, m)
Xj≥dj min (j = 1,…, n)
Xj≥dj min (j = 1,…, n)
Condiciones de no negatividad
Xj ≥ 0 (j = 1,…, n)
Cj
- coeficiente económico de cada actividad j
Aij
- norma de consumo unitaria del recurso i para la actividad j
bi
- disponibilidad del recurso tipo i
dj
- demanda mínima y máxima para la actividad j
Se realizará una interpretación de la solución del Modelo de PL, a través del Programa Computacional QMWIN. Este tiene como propósito general resolver problemas de PL y de otros tipos de problemas. El mismo posee un ambiente amigable el cual posibilita su fácil compresión.
Para poder trabajar con él, no es necesaria la instalación del mismo, ya que es portable, una vez abierto se utilizará el modulo que corresponda a la solución de cada problema.
En las Figuras 1 y 2 se plantea el procedimiento del software para la interpretación económica del problema teniendo en cuenta los valores de las variables, las restricciones y la FO para su sensitividad y optimización.
FIGURA 1.
Valor de las variables de decisión con sus restricciones asociadas para la solución óptima.
FIGURA 2.
Análisis de sensitividad de la FO.
Las variables de decisión serán en este caso las operaciones 1, 2, 3, 4 y 5 que son las actividades competitivas, correspondiendo los diversos valores de X al nivel de cada actividad competitiva (Tabla 3).
TABLA 3.
Variables de decisión del Modelo
El máximo de ganancia se obtiene cuando la suma de las ganancias producidas por cada operación es máxima, lo que expresado en forma de ecuación es:
MAX Ganancia = (precio - costo) Xi
Las restricciones serán las ecuaciones limitantes del problema y serán de la forma general
aijXj ≤ bi (i = 1, 2…., m)
Sistema de Restricciones
Fondo de tiempo de cada operación respectivamente
Cantidad de cursos a producir (4, 5, 6, 7 y 8)
Cantidad total de los cursos a producir que debe ser como mínimo de 300
Mínimo de cursos de tipo j (10, 11, 12, 13 y 14)
Ya que el número de unidades de un producto no puede, en ningún momento, ser negativo
Realizando la interpretación económica y un análisis de sensitividad referido a los parámetros de la FO del problema, es decir, mostrara los rangos de variación de los coeficientes Cj de las variables, estos rangos los valores dentro de los cuales se puede mover los Cj sin que se afecte la optimalidad del problema podemos decir que:
Solución optima
RESULTADOS Y DISCUSIÓN
En la Tabla 4 se muestra el análisis de las variantes de producción, donde se aprecian las horas disponibles que se solicitan para la operación para todos los cursos y los resultados correspondientes.
TABLA 4.
Análisis de las variantes de producción
Por lo tanto, se necesitan las horas disponibles de 2000 que se solicitan para la operación catalogación para todos los cursos, mientras tanto el curso 4 no necesitan las horas disponibles.
Para la operación indexación se solicitan como mínimo 1500 horas disponibles, sin embargo, todos los cursos se completan, pero solo el curso 1 no se necesitan las horas disponibles.
Para la operación clasificación se solicitan como mínimo 800 horas disponibles que con los cursos 1, 3 y 4 se cubre dicha disponibilidad porque con los restantes no se necesitan las horas disponibles.
Se debe producir los cursos del tipo 1 y 2 exactamente el valor solicitado porque concuerda con su valor óptimo.
Se debe producir cursos del tipo 3 como mínimo 533,81 de los 800 solicitados por lo que sobran 266,19
Se debe producir cursos del tipo 4 como mínimo 812,13 de los 900 solicitados por lo que sobran 87,87
Se debe producir cursos del tipo 5 como mínimo 469,19 de los 600 solicitados por lo que sobran 130,81
El total de cursos entregados debe ser como mínimo 186,88 de lo solicitado por lo que sobran 113,12
La cantidad mínima a producir del curso 1 y 2 no es necearía su producción
La cantidad mínima a producir del curso 3 es de 265,19
La cantidad mínima a producir del curso 4 es de 86,88
La cantidad mínima a producir del curso 5 es de 129,81
Varios autores han planteado como Colectivo de autores (2013); Abril et al. (2015); Camero et al. (2016); Castillo y Aguirre (2017), demuestran que varias herramientas de optimización, son utilizadas para resolver problemas de programación lineal o cualquier tipo de problemas, como este software que posee algoritmos que facilitan solucionar un modelo matemático a través de su interpretación económica realizando un análisis de sensitividad referido a los parámetros de la Función Objetivo (FO) del problema, es decir, mostraran los rangos de variación dentro de los cuales se puede mover los Cj sin que se afecte la optimalidad del problema.
Una herramienta para la optimización de operaciones es la programación lineal, ya que es de gran ayuda para la toma de decisiones, puesto que se ajustan a la realidad del problema y brindan soluciones óptimas de acuerdo al objetivo planteado, permitiendo minimizar o maximizar el mismo (Caicedo y Ortiz, 2014).
CONCLUSIONES
La aplicación de los métodos de optimización permite la selección científicamente argumentada de la variante de producción de la Facultad de Ciencias Técnicas.
Las cinco variables son factibles y de 14 restricciones solo hay necesidad en nueve para aumentar su valor teniendo en cuenta sus rangos
El plan de producción óptimo de la Facultad de Ciencias Técnicas debe ser de 186,88 cursos, pero puede llegar como máximo 486,88 cursos para la carrera IPAI en la Plataforma Moodle y así maximizar las ganancias sin que se afecte la solución óptima del problema.